Gertrud Sälzle, Berufliche Oberschule Neu-Ulm

Einführung in Mathcad Teil 1 - Grundlagen

<u>1. Die Rechenzeichen</u>

Ein Textfeld entsteht bei der ersten Leertaste, erkennbar am "roten Cursor".

Schriftfarbe einstellen im Textfeld: Menü "Format" ---> "Text"

Formeln in Mathcad erkennen Sie am "blauen Cursor", Schriftfarbe schwarz.

Farbig unterlegen: Menü "Format"--->"Eigenschaften"--->"Bereich hervorheben" anklicken.

Es gibt 5 verschiedene Gleichheitszeichen:						
"normale" Definition:						
oder: Menü "Ansicht"> "Symbolleisten"> "Rechnen"> "Taschenrechner"						
"globale" Definition: ∎ ≡ ■						
oder: Menü "Ansicht"> "Symbolleisten"> "Auswertung"						
Gleichungen lösen:						
oder: Menü "Ansicht"> "Symbolleisten"> "Rechnen"> "Relationszeichen" > "Boolesche Operatoren"						
Auswertung symbolisch $\bullet \rightarrow$						
oder: Menü "Ansicht"> "Symbolleisten"> "Auswertung"						
Auswortung numorisch:						
oder: Menü "Ansicht"> "Symbolleisten"> "Rechnen"> "Taschenrechner"						

Diese Definitionen (außer "globale" Def.) gelten auf dem Rechenblatt von oben nach unten, von links nach rechts.

Hinweis: Dieser Funktionsterm könnte auch direkt definiert werden, z.B.:

$$h(x) := \frac{1}{2} \cdot x^3 - \frac{1}{2} \cdot x^2 - \frac{5}{2} \cdot x - \frac{3}{2}$$

Empfehlung: Legen Sie das Menü "Rechnen" bzw. das Menü "Auswerten" fest in Ihre Bearbeitungssleiste.

Extras	Symbolik	Fenster	Hilfe												
C1	чн <u>Б</u>	ft) 🗊	= &	۵ 🍄	100%	•)	A	[:::]	x =	∫dy dx	< Z	80	<mark>αβ</mark>	-
▼ 1	0 💌 🗆	F <i>K</i> <u>U</u>	Į 🛛 🔳		E }∃	x ² ×	2] =	:=	=	\rightarrow	•→	fx	xf	xfy	xfy

2. Algebraische Operationen

Gleichungen lösen, z.B. bei Nullstellen: Term aus dem Funktionsterm blau einrahmen, kopieren, separat einfügen. $\frac{1}{2} \cdot x^3 - \frac{1}{2} \cdot x^2 - \frac{5}{2} \cdot x - \frac{3}{2}$

Gleichheitszeichen erzeugen:

Strg + $\frac{1}{2}$ x

 $\frac{1}{2} \cdot x^3 - \frac{1}{2} \cdot x^2 - \frac{5}{2} \cdot x - \frac{3}{2} = 0$

1. Möglichkeit der Bestimmung von Nullstellen, Lösen von Gleichungen, faktorisieren usw.:

Variable x anklicken. Menü "Symbolik" ---> "Variable" ---> "auflösen"

Kommentar anzeigen:

hat als Lösung(en)

(3 |-1 |-1

Menü "Symbolik" ---> "Auswertungsformat" ---> "Kommentare anzeigen"

2. Möglichkeit der Bestimmung von Nullstellen, Lösen von Gleichungen, faktorisieren usw.:

Polynomdivision: Division als Bruch schreiben, Variable anklicken.

3. Zeichnen der Funktionsgraphen

Diagramm erstellen mit Tastenkombination:

oder auch:

Menü "Ansicht"--->"Symbolleisten"--->"Rechnen"--->"Diagramm"--->"X-Y-Diagramm"

AltGr

Q

Mehrere Graphen zeichnen:

ersten Funktionsterm eingeben, **"Komma"**, zweiten Funktionsterm eingeben **"Komma"**, dritten Funktionsterm eingeben usw.

Haben alle Graphen die **gleiche Definitionsmenge**, genügt auf der x-Achse das Eintragen **einer Spur x.**

Zum **Formatieren** des Koordinatensystems das Diagramm anklicken und im Fenster entsprechende Optionen wählen:

Und so sieht es dann aus:

Tabelle erzeugen:

erste Ziffer schreiben, "Komma", 2. Ziffer schreiben, "Strichpunkt", dritte Ziffer schreiben

sieht dann so aus:

Ergebnisformat

x_{Tab} := −2, −1.5..1

x

Tabelle dann normal mit numerischer Auswertung:

f _x (x _{Tab})	=
5.50	
2.38	
0.00	
-1.63	
-2.50	
-2.63	
-2.00	

1

 Eormat
 Aligemein
 2
 1

 Dezimal
 Anzahl Dezimalstellen
 2
 1

 Wissenschaftlich
 Ingenieurtechnisch
 Iv
 Nachfolgende Nullen anzeigen

 Bruch
 Auf symbolische Ergebnisse anwenden
 1
 1

 OK
 Abbrechen
 Zurücksetzen
 Hiffe

Einstellung der Genauigkeit (gültige Ziffern):

Zahl in der Tabelle doppelt anklicken ---> "Anzahl der Dezimalstellen" wählen ---> Ausgabe (z.B. Dezimal) wählen

Zahlenformat Anzeige-Optionen Einheiten Toleranz

4. Animation eines Kurvenpunktes, z.B. Berührpunkt der Tangente

Bel. Koeffizienten eines Funktionsterms	$a := \frac{1}{2}$ $b := \frac{-1}{2}$ $c := \frac{-5}{2}$ $d := \frac{-3}{2}$
Funktionsterm allgemein:	$f(x) := a \cdot x^3 + b \cdot x^2 + c \cdot x + d$
Funktionsterm speziell:	$f(x)\rightarrow \frac{x^3}{2}-\frac{x^2}{2}-\frac{5{\cdot}x}{2}-\frac{3}{2}$
1. Ableitungsfunktion:	$f_{\chi}(x) := \frac{d}{dx} f(x) \qquad f_{\chi}(x) \rightarrow \frac{3 \cdot x^2}{2} - x - \frac{5}{2}$
Tangentengleichung:	$\mathbf{t} \left(\mathbf{x} , \mathbf{x_0} \right) \coloneqq \mathbf{f_x} \left(\mathbf{x_0} \right) \cdot \left(\mathbf{x} - \mathbf{x_0} \right) + \mathbf{f} \left(\mathbf{x_0} \right)$

Zuerst die Animation programmieren über das Schlüsselwort "FRAME", per Hand schreiben.

Animation des Aufhängepunktes für die Tangente:

$$x_0 := -2 + \frac{FRAME}{30}$$

Animation von 0 bis 165

Durch welche Zahl geteilt wird (hier 30) und welcher Animationsbereich einzustellen ist, muss man ausprobieren.

Menüleiste "Extras" ---> "Animation" ---> "Aufzeichnen"

Es erscheint ein graues Animationsfenster: "Animation aufzeichnen"

"Für FRAME" einstellen, z.B. von 0 bis 165, dann mit der linken gedrückten Maustaste das Diagramm einrahmen (schwarz gestrichelter Rahmen). Im grauen Animationsfenster auf "Animieren" klicken.

------ Für die Animation komplett einrahmen ------

Aufhängepunkt:

Tangentengleichung:

$$t\!\left(x\,,x_{0}\right)\rightarrow\frac{11\!\cdot\!x}{2}+\frac{17}{2}$$

Tangentensteigung:

$$f_x(x_0) = 5.5$$

------ bis hierher ------

5. Bewegung eines Kurvenpunktes mit dem Schieberegler

Schieberegler erzeugen:

Aufhängepunkt:

 $x_0 = 0.833$

t(

Tangentengleichung:

$$(\mathbf{x}, \mathbf{x_0}) \rightarrow -\frac{55 \cdot \mathbf{x}}{24} - \frac{187}{108}$$

. .

Tangentensteigung:

$$f_x(x_0) = -2.292$$