Abiturprüfung Berufliche Oberschule 2013

Mathematik 13 Nichttechnik - A II - Lösung

Teilaufgabe 1.0

Eine gebrochenrationale Funktion $f: x \mapsto f(x)$, $D_f = IR$, hat eine Nullstelle bei x = -1, eine Unendlichkeitsstelle (Polstelle) ohne Vorzeichenwechsel an der Stelle x = 1 und eine stetig behebbare Definitionslücke an der Stelle x = 4. Der Graph von f hat ferner eine waagrechte Asymptote mit der Gleichung y = 0.

Teilaufgabe 1.1 (5 BE)

Bestimmen Sie den Funktionsterm f(x), wenn der Nenner ein Polynom dritten Grades ist und außerdem gilt: f(5) = 3.

 $\mbox{Allgemeiner Funktionsterm:} \quad f(x\,,\,a) := \, a \cdot \frac{(x\,+\,1) \cdot (x\,-\,4)}{(x\,-\,1)^2 \cdot (x\,-\,4)}$

 $P(5/3) \in G_f: \qquad \qquad a_0 := f(5,a) = 3 \rightarrow \frac{3 \cdot a}{8} = 3 \text{ auflösen}, a \rightarrow 8$

Konkreter Funktionsterm: $f(x) := \frac{8 \cdot (x+1) \cdot (x-4)}{\left(x-1\right)^2 \cdot (x-4)}$

Teilaufgabe 1.2.0

Im Folgenden wird die stetige Fortsetzung g der Funktion f betrachtet:

 $g(x) := \frac{8 \cdot x + 8}{\left(x - 1\right)^2} \quad \text{mit} \quad D_g = IR \setminus \{\ 1\ \}. \ \text{Der Graph von g wird mit} \ \ G_g \ \text{bezeichnet}.$

Teilaufgabe 1.2.1 (3 BE)

Geben Sie die Gleichungen und die Art aller Asymptoten von Ga sowie die Nullstelle von gan.

Senkrechte Asymptote: x = 1

Waagrechte Asymptote: y = 0

Nullstelle: $x_0 = -1$

Teilaufgabe 1.2.2 (9 BE)

Bestimmen Sie die maximalen Monotonie
intervalle von $\mathbf{G}_{\mathbf{g}}$ und ermitteln Sie die Art und die Koordinaten des Extrempunktes von $\mathbf{G}_{\mathbf{g}}$.

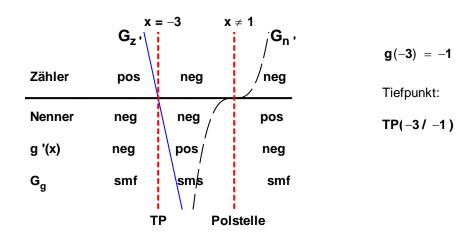
[Teilergebnis: $g'(x) = \frac{-8 \cdot x - 24}{(x-1)^3}$]

$$g'(x) = \frac{8 \cdot (x-1)^2 - (8 \cdot x + 8) \cdot 2 \cdot (x-1)}{\left(x-1\right)^4} = \frac{8 \cdot x - 8 - 16 \cdot x - 16}{\left(x-1\right)^3} = \frac{-8 \cdot x - 24}{\left(x-1\right)^3}$$

Zählerfunktion: $z'(x) := -8 \cdot x - 24$

Nennerfunktion: $n'(x) := (x-1)^3$

Þ

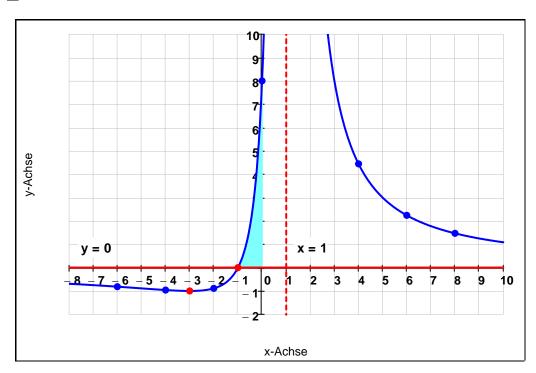


 G_g ist streng monoton fallend in] $-\infty$; -3], G_g ist streng monoton steigend in [-3 ; 1[und G_g ist streng monoton fallend in] 1 ; ∞ [.

Teilaufgabe 1.2.3 (5 BE)

Zeichnen Sie die Asymptoten von G_g mit Hilfe der bisherigen Ergebnisse für $-6 \le x \le 8$ in ein Koordinatensystem. Berechnen Sie dazu weitere geeignete Funktionswerte.

Þ



Teilaufgabe 1.2.4 (5 BE)

Zeigen Sie, dass gilt: $\int g(x) dx = 4 \cdot \ln(x - 1)^2 - \frac{16}{x - 1} + C \text{ mit } C \in \mathbb{R} \text{ und berechnen Sie}$

die Maßzahl des Inhalts der Fläche, die G_a mit den Achsen einschließt.

$$G(x\,,C):=4\!\cdot\! ln \bigg[\big(x-1\big)^2 \bigg] - \frac{16}{x-1} + C$$

$$G'(x) = 4 \cdot \frac{2 \cdot (x-1)}{(x-1)^2} + \frac{16}{(x-1)^2} = \frac{8 \cdot x - 8 + 16}{(x-1)^2} = \frac{8 \cdot x + 8}{(x-1)^2} = g(x)$$

$$A = \int_{-1}^{0} g(x) dx = G(0) - G(-1)$$

$$A := G(0,C) - G(-1,C) = 8 - 4 \cdot ln(4)$$

$$A = 2.45$$

Teilaufgabe 2.0

Gegeben ist die Funktion h: $x \mapsto 10 \cdot (2 - \ln(x))^2$ in der maximalen Definitionsmenge $D_h \subset IR$, Der Graph von h wird mit G_h bezeichnet.

Teilaufgabe 2.1 (5 BE)

Bestimmen Sie D_h sowie die Lage und die Vielfachheit der Nullstelle von h und untersuchen Sie das Verhalten von h an den Rändern von D_h .

Definitionsmenge: D = 10; ∞

$$h(x) := 10 \cdot (2 - \ln(x))^2$$

$$h(x) = 0 \rightarrow 10 \cdot (ln(x) - 2)^2 = 0$$
 auflösen, $x \rightarrow e^2$

Zweifache Nullstelle $x_0 := e^{2}$

Teilaufgabe 2.2 (2 BE)

Begründen Sie nur mit Hilfe der bisherigen Ergebnisse ohne weitere Berechnungen, dass die Nullstelle der Funktion h ein Tiefpunkt von G_h ist.

Nullstelle von h $x_0 = e^2$ ist zweifach \Rightarrow also auch Nullstelle von h'.

Aus dem Verhalten an den Grenzen folgt, dass die Nullstelle ein Tiefpunkt ist.

Teilaufgabe 2.3 (7 BE)

Ermitteln Sie die Koordinaten des Wendepunkts von Gh.

[Teilergebnis:
$$h''(x) = -20 \cdot \frac{\ln(x) - 3}{x^2}$$

$$h(x) := 10 \cdot (2 - \ln(x))^2$$

$$h'(x) = 10 \cdot 2 \cdot (2 - \ln(x)) \cdot \left(\frac{-1}{x}\right) = -20 \cdot \frac{(2 - \ln(x))}{x}$$

$$h''(x) = -20 \cdot \frac{\left(\frac{-1}{x}\right) \cdot x - (2 - \ln(x)) \cdot 1}{x^2} = -20 \cdot \frac{\ln(x) - 3}{x^2}$$

$$h''(x) = 0 \qquad \Leftrightarrow \qquad ln(x) - 3 = 0 \qquad \qquad x_W := e^3$$

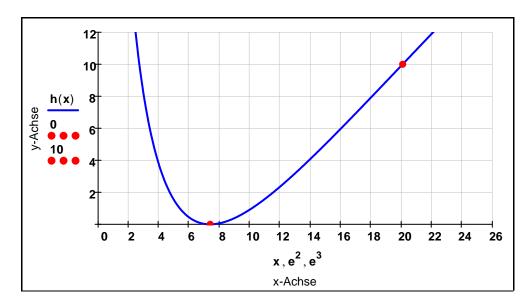
$$x_W := e^3$$
 einfache Nullstelle, also Wendestelle

$$h(e^3) = 10$$
 Wendepunkt: WP($e^3 / 10$)

Teilaufgabe 2.4 (4 BE)

Skizzieren Sie G_h für $0 < x \le 24$ in ein Koordinatensystem.

[Maßstab: 1 LE entspricht 0,5 cm]



Teilaufgabe 3.0

Morgens um 7:00 Uhr wird eine Tasse heißer Tee eingeschenkt. Der Abkühlvorgang des Tees kann durch die Funktionsgleichung $T(t) = 18 + a \cdot e^{-c \cdot t}$ (mit $a, c > 0, t \ge 0$) beschrieben werden, wobei T(t) die Temperatur des Tees in Grad Celsius angibt und t die Zeit in Minuten. Der Abkühlvorgang beginnt zum Zeitpunkt t = 0 um 7:00 Uhr.

Bei der Rechnung kann auf die Verwendung von Einheiten verzichtet werden.

Teilaufgabe 3.1 (5 BE)

Nach 2 Minuten hat der Tee eine Temperatur von 74°C und um 7:25 Uhr ist er bereits auf 28°C abgekühlt. Bestimmen Sie aus diesen Angaben die Werte der Konstanten a und c.

$$\textbf{T}(\textbf{t},\textbf{a},\textbf{c}) := \textbf{18} + \textbf{a} {\cdot} \textbf{e}^{-\,\textbf{c} {\cdot} \textbf{t}}$$

$$T(2, a, c) = 74 \rightarrow a \cdot e^{-2 \cdot c} + 18 = 74$$
 \Leftrightarrow $a \cdot e^{-2 \cdot c} = 56$ (1)

$$T(25, a, c) = 28 \rightarrow a \cdot e^{-25 \cdot c} + 18 = 28$$
 \Leftrightarrow $a \cdot e^{-25 \cdot c} = 10$ (2)

$$\frac{(1)}{(2)} \qquad \frac{a \cdot e^{-2 \cdot c}}{a \cdot e^{-25 \cdot c}} = \frac{56}{10} \qquad \Leftrightarrow \qquad e^{23 \cdot c} = \frac{56}{10}$$

$$\ln\left(\frac{28}{5}\right)$$

$$\Leftrightarrow \qquad c := \frac{1}{23} \cdot ln \left(\frac{56}{10} \right) \qquad c \ = \ \frac{ln \left(\frac{28}{5} \right)}{23} = 0.075$$

c einsetzen in (1)
$$a := \frac{56}{e^{-2 \cdot 0.075}}$$
 $a = 65$

Setzen Sie in folgenden Teilaufgaben a = 65 und c = 0.075.

Teilaufgabe 3.2 (3 BE)

Ermitteln Sie die Temperatur des Tees um 7:00 Uhr und auf welche Endtemperatur sich der Tee langfristig abkühlen wird. Erläutern Sie die Bedeutung der Endtemperatur im Sachzusammenhang.

$$T(t) := 18 + 65 \cdot e^{-0.075 \cdot t}$$

um 7:00 Uhr:
$$T(0) = 83$$

Nach langer Zeit:
$$\lim_{t \, \to \, \infty} \left(18 + 65 \cdot e^{-0.075 \cdot t} \right) \, \to 18.0$$

18° entspricht der Umgebungstemperatur.

Teilaufgabe 3.3 (4 BE)

Bestimmen Sie die Werte der Ableitung von T nach 3 Minuten und nach 25 Minuten. Erläutern Sie die Werte im Sachzusammenhang.

$$\textbf{T'}(t) := -65 \cdot 0.075 \cdot e^{-\ 0.075 \cdot t}$$

$$T'(3) = -3.89$$
 $T'(25) = -0.75$

Der Tee kühlt nach 3 Minuten um 3,9°C pro Minute ab und nach 25 Minuten um 0,75°C ab. Der Tee kühlt also anfangs stärker ab als später.

Teilaufgabe 3.4 (3 BE)

Der Abkühlvorgang wird als abgeschlossen bezeichnet, wenn die Temperatur des Tees unter 19°C fällt. Berechnen Sie, um wie viel Uhr (gerundet auf ganze Minuten) dies der Fall ist.

$$T(t) = 19 \qquad \Leftrightarrow \qquad 18 + 65 \cdot e^{-0.075 \cdot t} = 19$$

$$-0.075 \cdot t = In \left(\frac{1}{65} \right)$$
 $t_{end} := \frac{-1}{0.075} \cdot In \left(\frac{1}{65} \right)$ $t_{end} = 56$

Um 7:56 Uhr ist der Abkühlungsvorgang abgeschlossen.

