Abschlussprüfung Berufliche Oberschule 2014

Mathematik 12 Technik - B I - Lösung

Teilaufgabe 1.0

In einem kartesischen Koordinatensystem des IR³ mit dem Ursprung O sind der Punkt P(7/-2/8) und die Ebenen E, F und G_k gegeben:

E:
$$-4 \cdot x_1 - x_2 + x_3 + 18 = 0$$
; F: $2 \cdot x_1 + x_2 - 12 = 0$; G_k : $x_2 + x_3 + k = 0$

Teilaufgabe 1.1 (4 BE)

Ermitteln Sie eine Gleichung der Schnittgeraden s der Ebenen E und F.

[Mögliches Ergebnis: s:
$$\mathbf{x} = \begin{pmatrix} 3 \\ 6 \\ 0 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 0.5 \\ -1 \\ 1 \end{pmatrix}$$
, $\lambda \in \mathbb{R}$]

$$\begin{pmatrix} -4 & -1 & 1 & -18 \\ 2 & 1 & 0 & 12 \end{pmatrix}$$

Wähle
$$x_2 = \lambda$$

$$\Rightarrow \qquad x_1 = \frac{1}{2} \cdot (12 - \lambda) = 6 - \frac{1}{2} \cdot \lambda \qquad \Rightarrow \qquad x_3 = -18 + \lambda + 4 \cdot \left(6 - \frac{1}{2} \cdot \lambda\right) = 6 - \lambda$$

$$\dot{\mathbf{x}} = \begin{pmatrix} 6 - \frac{1}{2} \cdot \lambda \\ \lambda \\ 6 - \lambda \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 6 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -0.5 \\ 1 \\ -1 \end{pmatrix}$$

Teilaufgabe 1.2 (5 BE)

Bestimmen Sie die Koordinaten des Punktes R, der durch Spiegelung des Ursprungs O an der Geraden s hervorgeht.

$$\overrightarrow{\mathsf{OL}(\lambda)} = \begin{pmatrix} 0.5 \cdot \lambda + 3 \\ 6 - \lambda \\ \lambda \end{pmatrix}$$

$$\begin{pmatrix} 0.5 \cdot \lambda + 3 \\ 6 - \lambda \\ \lambda \end{pmatrix} \cdot \begin{pmatrix} 0.5 \\ -1 \\ 1 \end{pmatrix} = 0 \qquad \Leftrightarrow \qquad 0.5 \cdot (0.5 \cdot \lambda + 3) - (6 - \lambda) + \lambda = 0$$

$$0.5\cdot(0.5\cdot\lambda+3)-(6-\lambda)+\lambda=0$$

$$\frac{3}{4} \cdot \lambda + \frac{3}{2} - 6 + \lambda + \lambda = 0$$

$$\frac{9}{4} \cdot \lambda - \frac{9}{2} = 0$$
 auflösen, $\lambda \rightarrow 2$

$$\frac{1}{4} \cdot \lambda + \frac{3}{2} - 6 + \lambda + \lambda = 0 \qquad \Leftrightarrow \qquad \frac{9}{4} \cdot \lambda - \frac{9}{2} = 0 \text{ auflösen }, \lambda \rightarrow 2$$

$$\overrightarrow{OR} = 2 \cdot \overrightarrow{OL(2)} = 2 \cdot \begin{pmatrix} 0.5 \cdot 2 + 3 \\ 6 - 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \\ 4 \end{pmatrix} \qquad \Rightarrow \text{ Spiegelpunkt: } R(8/8/4)$$

mathphys-online

Teilaufgabe 1.3 (4 BE)

Bestimmen Sie alle Werte von k, für die die drei Ebenen E, F und G, jeweils keinen gemeinsamen

keine Lösung, falls: $-\mathbf{k}-\mathbf{6}\neq\mathbf{0}$

Teilaufgabe 1.4 (6 BE)

Zusätzlich sind die Gerade h: $\mathbf{x} = \begin{pmatrix} \mathbf{3} \\ -\mathbf{3} \\ \mathbf{9} \end{pmatrix} + \mu \cdot \begin{pmatrix} \mathbf{4} \\ \mathbf{1} \\ -\mathbf{1} \end{pmatrix}$ mit $\mu \in IR$ und der Punkt Q(4/4/2) gegeben.

Bestimmen Sie die Koordinaten der Punkte S₁ und S₂ auf der Geraden h so, dass das Volumen der jeweiligen Pyramide OPQS₁ bzw. OPQS₂ die Maßzahl 27 hat.

$$\overrightarrow{OP} = \begin{pmatrix} 7 \\ -2 \\ 8 \end{pmatrix} \qquad \overrightarrow{OQ} = \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix} \qquad \overrightarrow{OS} = \begin{pmatrix} 4 \cdot \mu + 3 \\ \mu - 3 \\ 9 - \mu \end{pmatrix}$$

Allgemeine Bedingung: $\frac{1}{6} \cdot \left| \left(\overrightarrow{OP} \times \overrightarrow{OQ} \right) \cdot \overrightarrow{OS} \right| = 27$

 $\begin{pmatrix} 7 \\ -2 \\ \end{pmatrix} \times \begin{pmatrix} 4 \\ 4 \\ \end{pmatrix} = \begin{pmatrix} -36 \\ 18 \\ 36 \end{pmatrix} \qquad \begin{pmatrix} \begin{pmatrix} -36 \\ 18 \\ 36 \end{pmatrix} \cdot \begin{pmatrix} 4 \cdot \mu + 3 \\ \mu - 3 \\ 9 - \mu \end{pmatrix} = 162 - 162 \cdot \mu$ Nebenrechnungen:

Konkrete Bedingung: $|162 - 162 \cdot \mu| = 27 \cdot 6$

1. Fall:

2. Fall:

mathphys-online

Teilaufgabe 2.0

Ein Fluglotse beobachtet zwei Flugzeuge gleichzeitig, deren jeweilige Positionen F_1 bzw. F_2 sich in einem geeignet gewählten kartesischen Koordinatensystem des IR 3 in einem bestimmten Zeitraum durch folgende Gleichungen beschreiben lassen:

$$\overrightarrow{\mathsf{OF_1}} = \begin{pmatrix} -5.6 \\ -5.8 \\ 1.8 \end{pmatrix} + \ t_1 \cdot \begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \end{pmatrix}, \ \ t_1 \in [\ 0\ ;\ 30\]\ ; \ \ \overrightarrow{\mathsf{OF_2}} = \begin{pmatrix} -7.8 \\ 0.8 \\ 4 \end{pmatrix} + \ t_2 \cdot \begin{pmatrix} 0.4 \\ 0.1 \\ 0 \end{pmatrix}, \ \ t_2 \in [\ 0\ ;\ 30\]\ ;$$

Die Koordinaten von $\overrightarrow{OF_1}$ und $\overrightarrow{OF_2}$ haben die Einheit km, die Parameter t_1 und t_2 beschreiben jeweils die nach dem gleichzeitigen Beobachtungsbeginn verstrichene Zeit in Minuten. Auf das Mitführen der Einheiten bei den Berechnungen kann verzichtet werden.

Teilaufgabe 2.1 (5 BE)

Zeigen Sie, dass sich die Flugbahnen schneiden, es aber zu keiner Kollision kommt.

$$\begin{pmatrix} -5.6 \\ -5.8 \\ 1.8 \end{pmatrix} + t_1 \cdot \begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \end{pmatrix} = \begin{pmatrix} -7.8 \\ 0.8 \\ 4 \end{pmatrix} + t_2 \cdot \begin{pmatrix} 0.4 \\ 0.1 \\ 0 \end{pmatrix}$$

Gaußmatrix:

$$\begin{pmatrix} 0.6 & -0.4 & -2.2 \\ 0.8 & -0.1 & 6.6 \\ 0.2 & 0 & 2.2 \end{pmatrix}$$

3. Zeile:
$$0.2 \cdot t_1 = 2.2 \text{ auflösen}, t_1 \rightarrow 11.0$$
 $t_1 := 11$

2. Zeile:
$$0.8 \cdot 11 - 0.1 \cdot t_2 = 6.6 \text{ auflösen}, t_2 \rightarrow 22.0 \quad t_2 := 22$$

Probe mit der 1. Zeile:
$$0.6 \cdot 11 - 0.4 \cdot 22 = -2.2$$
 wahr
$$\begin{pmatrix} -5.6 \\ -5.8 \\ 1.8 \end{pmatrix} + 11 \cdot \begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

Eindeutige Lösung.

Die Zeitpunkte t₁ und t₂ stimmen jedoch nicht überein, also keine Kollision.

mathphys-online

Teilaufgabe 2.2 (6 BE)

Weisen Sie nach, dass zum Zeitpunkt t ab Beobachtungsbeginn für den Abstand d(t) zwischen beiden Flugzeugen gilt: $d(t) = \sqrt{0.57 \cdot t^2 - 9.24 \cdot t + 53.24}$.

Bestimmen Sie außerdem den Zeitpunkt $\mathbf{t_{min}}$ (gerundet auf eine Nachkommastelle), zu dem der quadrierte Abstand (also $(\mathbf{d(t)})^2$) am geringsten ist.

$$\begin{pmatrix} -5.6 \\ -5.8 \\ 1.8 \end{pmatrix} + t \cdot \begin{pmatrix} 0.6 \\ 0.8 \\ 0.2 \end{pmatrix} - \begin{bmatrix} \begin{pmatrix} -7.8 \\ 0.8 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 0.4 \\ 0.1 \\ 0 \end{pmatrix} \end{bmatrix} \rightarrow \begin{pmatrix} 0.2 \cdot t + 2.2 \\ 0.7 \cdot t - 6.6 \\ 0.2 \cdot t - 2.2 \end{pmatrix}$$

$$\textbf{d(t)} := \sqrt{ \left(\textbf{0.2} \cdot \textbf{t} + \textbf{2.2} \right)^2 + \left(\textbf{0.7} \cdot \textbf{t} - \textbf{6.6} \right)^2 + \left(\textbf{0.2} \cdot \textbf{t} - \textbf{2.2} \right)^2 }$$

Nebenrechnungen:

$$\left(0.2{\cdot}t+2.2\right)^2 \text{ erweitern } \rightarrow 0.88{\cdot}t+0.04{\cdot}t^2+4.84$$

$$(0.7 \cdot t - 6.6)^2$$
 erweitern $\rightarrow -9.24 \cdot t + 0.49 \cdot t^2 + 43.56$

$$(0.2 \cdot t - 2.2)^2$$
 erweitern $\rightarrow -0.88 \cdot t + 0.04 \cdot t^2 + 4.84$

$$0.88 \cdot t + 0.04 \cdot t^2 + 4.84 + \left(-9.24 \cdot t + 0.49 \cdot t^2 + 43.56\right) + \left(-0.88 \cdot t + 0.04 \cdot t^2 + 4.84\right) = -0.88 \cdot t + 0.04 \cdot t^2 + 4.84 \cdot t + 0.04 \cdot t^2 + 4.84$$

$$... = -9.24 \cdot t + 0.57 \cdot t^2 + 53.24$$

$$d(t) = \sqrt{-9.24 \cdot t + 0.57 \cdot t^2 + 53.24}$$

Hilfsfunktion:

$$f(t) := 0.57 \cdot t^2 - 9.24 \cdot t + 53.24$$

$$f'(t) := \frac{d}{dt}f(t) = 1.14 \cdot t - 9.24$$

$$f'(t) = 0 \text{ aufl\"osen}, t \rightarrow 8.1052631578947368421 \qquad \qquad t_{min} \coloneqq 8.1$$

$$f"(t) := \frac{d}{dt} f'(t) \rightarrow 1.14 \qquad \qquad f"(8.1) = 1.14 \qquad \text{$>$ 0, also Tiefpunkt}$$