Abschlussprüfung Berufliche Oberschule 2016

• Mathematik 12 Technik - A II - Lösung mit CAS

Teilaufgabe 1.0

Gegeben ist die reelle Funktion f mit $f(x) = \frac{1}{x \cdot (1 - \ln(x))^2}$ mit der maximalen Definitionsmenge

 $\mathbf{D_f} \subset \mathbf{IR}$. Der Graph von f wird mit $\mathbf{G_f}$ bezeichnet.

Teilaufgabe 1.1 (5 BE)

Bestimmen Sie ohne CAS die maximale Definitionsmenge Df.

Geben Sie die Definitionslücke von f und ihre Art genau an.

1. Bedingung: x > 0

2. Bedingung: $(1 - \ln(x))^2 = 0 \Leftrightarrow \ln(x) = 1 \Leftrightarrow x_0 = e$

Definitionsmenge: $D_f =]0; \infty[\setminus \{e\}]$

Definitionslücke: x = e Polstelle ohne VZW

Teilaufgabe 1.2 (6 BE)

Untersuchen Sie das Verhalten der Funktionswerte f(x) an den Rändern von D_f .

Geben Sie die Art und die Gleichungen der daraus folgenden Asymptoten des Graphen von f an. Zeigen Sie ohne weitere Rechnung, dass der Graph von f seine horizontale Asymptote nicht schneidet.

 $\lim_{x \to \infty} \frac{1}{x \cdot (1 - \ln(x))^2} \to 0 \qquad \Rightarrow \qquad \text{waagrechte Asymptote A}_1: \quad y = 0$

 $\lim_{\mathbf{x} \to \mathbf{0}^{+}} \frac{1}{\mathbf{x} \cdot (\mathbf{1} - \ln(\mathbf{x}))^{2}} \to \infty \qquad \Rightarrow \qquad \text{senkrechte Asymptote A}_{2}: \qquad \mathbf{x} = \mathbf{0}$

 $\lim_{\mathbf{X} \to \mathbf{e}^{-}} \frac{1}{\mathbf{x} \cdot (1 - \ln(\mathbf{x}))^{2}} \to \infty$

 \Rightarrow senkrechte Asymptoten A₃: $\mathbf{x} = \mathbf{e}$

 $\lim_{x \to e^{+}} \frac{1}{x \cdot (1 - \ln(x))^{2}} \to \infty$

Teilaufgabe 1.3 (11 BE)

Bestimmen Sie ohne CAS die maximalen Monotonieintervalle von f und ermitteln Sie mithilfe dieser Monotonieintervalle die Art und Koordinaten des relativen Extrempunktes des Graphen von f.

[Mögliches Teilergebnis:
$$f'(x) = \frac{1 + \ln(x)}{x^2 \cdot (1 - \ln(x))^3}$$
]

$$f'(x) = \frac{- \left[1 \cdot (1 - \ln(x))^2 + x \cdot 2 \cdot (1 - \ln(x)) \cdot \frac{-1}{x} \right]}{x^2 \cdot (1 - \ln(x))^4} = (1 - \ln(x)) \cdot \frac{-1 + \ln(x) + 2}{x^2 \cdot (1 - \ln(x))^4}$$

$$f'(x) := \frac{1 + \ln(x)}{x^2 \cdot (1 - \ln(x))^3}$$

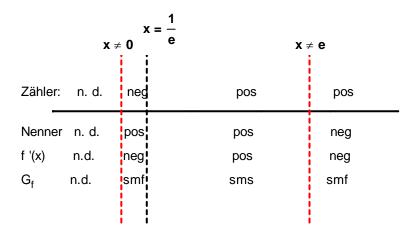
waagrechte Tangenten:

$$f'(x) = 0 \Leftrightarrow 1 + \ln(x) = 0 \Leftrightarrow \ln(x) = -1 \Leftrightarrow x = \frac{1}{e}$$

Zähler: z(x) := 1 + ln(x)

Nenner: $x^2 \cdot (1 - \ln(x))^3$

Nennerfaktor: $n(x) := (1 - ln(x))^3$ $x > 0 \land x^2 > 0$ y1 := -6...3



 $\mathbf{G_f}$ ist streng mon. fallend in] $\mathbf{0}$; $\frac{1}{\mathbf{e}}$] und in] \mathbf{e} ; ∞ [. $\mathbf{G_f}$ ist streng mon. steigend in [$\frac{1}{\mathbf{e}}$; \mathbf{e} [.

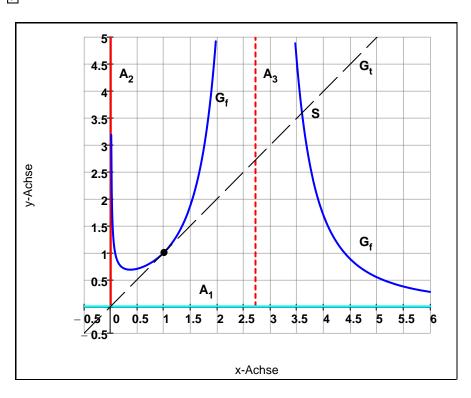
 $f\left(\frac{1}{e}\right) \rightarrow \frac{e}{4}$ Tiefpunkt: $T\left(\frac{1}{e}, \frac{e}{4}\right)$

Teilaufgabe 1.4 (6 BE)

Zeichnen Sie mithilfe der bisherigen Ergebnisse und weiterer geeigneter Funktionswerte den Graphen der Funktion f für $0 < x \le 6$ sowie mit Farbe sämtliche Asymptoten von G_f in ein kartesisches

Koordinatensystem. Maßstab: 1LE = 2cm

Þ



Teilaufgabe 1.5 (6 BE)

Bestimmen Sie eine Gleichung der Tangente t an G_f , die durch den Ursprung verläuft. Zeichnen Sie die Tangente t in das Koordinatensystem von Teilaufgabe 1.4 ein.

[Teilergebnis: $\mathbf{t}(\mathbf{x}) = \mathbf{x}$]

Wähle $P(u/v) \in G_f$

Tangente an G_f : $\mathbf{t}(\mathbf{x}, \mathbf{u}) := \mathbf{f}'(\mathbf{u}) \cdot (\mathbf{x} - \mathbf{u}) + \mathbf{f}(\mathbf{u})$

$$t(x\,,u) \;=\; \frac{1}{u\cdot (\ln{(u)}\,-\,1)^2} \,+\, \frac{(u-x)\cdot (\ln{(u)}\,+\,1)}{u^2\cdot (\ln{(u)}\,-\,1)^3}$$

 $\text{Durch den Ursprung:} \qquad t(0\,,u) = 0 \to \frac{1}{u\cdot \left(ln\,(u)\,-\,1\right)^2} + \frac{ln\,(u)\,+\,1}{u\cdot \left(ln\,(u)\,-\,1\right)^3} = 0$

Auflösen nach u: $u_0 := t(0, u) = 0$ auflösen, $u \rightarrow 1$

Einsetzen: $t(\textbf{x}) := t \Big(\textbf{x} \,, \textbf{u}_{\textbf{0}}\Big) \hspace{1cm} t(\textbf{x}) \; = \; \textbf{x}$

Teilaufgabe 1.6 (5 BE)

Die Tangente t schneidet G_f im Punkt S($x_S \mid f(x_S)$). Berechnen Sie mithilfe des Newton-Verfahrens einen Näherungswert für die Schnittstelle $x_S > 3$.

Das Ergebnis ist genau genug, wenn sich der Funktionswert von f(x) und t(x) um höchstens 0.01 unterscheiden. Berechnen Sie x_S auch mithilfe des CAS und geben Sie die relative

Abweichung (in %) der Ergebnisse von Newton-verfahren und CAS an.

$$f(x)=t(x)\to \frac{1}{x\cdot \left(ln(x)-1\right)^2}=x$$

Differenz funktion:
$$D(x) := f(x) - t(x) = \frac{1}{x \cdot (\ln(x) - 1)^2} - x$$

Ableitung von D(x):
$$D'(x) := \frac{d}{dx}D(x) = -\frac{1}{x^2 \cdot (\ln(x) - 1)^2} - \frac{2}{x^2 \cdot (\ln(x) - 1)^3} - 1$$

ORIGIN := 0

Startwert:
$$n := 0..4$$
 $z_0 := 4$

$$z_{n+1} := z_n - \frac{D(z_n)}{D'(z_n)}$$
 z wegen Feldindex

n =	z _n =	z _{n+1} =	$D(z_{n+1}) =$	
0	4	3.3519777	3.4419576	
1	3.3519777	3.5058321	0.9005227	
2	3.5058321	3.5800298	0.1036045	
3	3.5800298	3.5909332	0.0017290	→ 0.0017290 < 0.01
4	3.5909332	3.5911214	0.0000005	

$$\Rightarrow$$
 $x_S := 3.5909332$ für $n = 3$

$$lsg := D(x) = 0 \rightarrow \frac{1}{x \cdot (ln(x) - 1)^2} - x = 0 \text{ auflösen}, x \rightarrow \begin{pmatrix} 1.0 \\ 3.5911214766686221366 \end{pmatrix}$$

$$x_{CAS} := Isg_1$$
 $x_{CAS} = 3.5911215$

relative Abweichung:
$$\frac{x_{CAS} - x_{S}}{x_{CAS}} = 0.0052428\%$$

$$\frac{x_{CAS} - x_{S}}{x_{S}} = 0.0052431\%$$

Teilaufgabe 1.7 (3 BE)

Gegeben ist die reelle Funktion F mit $F(x) = \frac{1}{1 - \ln(x)}$ mit der Definitionsmenge $D_F = D_f$.

Zeigen Sie ohne CAS, dass F eine Stammfunktion von f in $\mathbf{D_F}$ ist.

$$F(x) := \frac{1}{1 - \ln(x)}$$

$$F'(x) = \frac{-1}{(1 - \ln(x))^2} \cdot \left(\frac{-1}{x}\right) = \frac{1}{x \cdot (1 - \ln(x))^2}$$

$$f(x) = \frac{1}{x \cdot (\ln(x) - 1)^2}$$

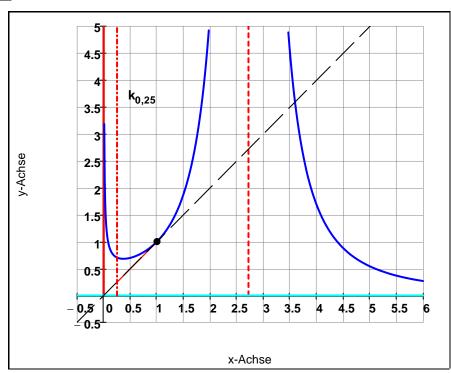
Teilaufgabe 1.8.0

Der Graph von f, die Tangente t und die Gerade $\mathbf{k_a}$ mit der Gleichung $\mathbf{x} = \mathbf{a}$ mit $\mathbf{a} \in \mathbf{IR} \land \mathbf{0} < \mathbf{a} < \mathbf{1}$ schließen rechts von $\mathbf{k_a}$ ein endliches Flächenstück mit der von a abhängigen Maßzahl $\mathbf{A}(\mathbf{a})$ des Flächeninhalts ein.

Teilaufgabe 1.8.1 (4 BE)

Kennzeichnen Sie dieses Flächenstück für $\mathbf{a} = \mathbf{0.25}$ in Ihrem Schaubild aus 1.4 und zeigen Sie,

dass für
$$A(a)$$
 gilt: $A(a) = 0.5 \cdot (a^2 + 1) - \frac{1}{1 - \ln(a)}$.



$$A(a) = \int_{a}^{1} (f(x) - t(x)) dx = F(1) - F(a) - \frac{1}{2} + \frac{a^{2}}{2} = \frac{1}{1 - \ln(1)} - \frac{1}{1 - \ln(a)} - \frac{1}{2} + \frac{a^{2}}{2}$$

$$A(a) = 1 - \frac{1}{1 - \ln(a)} - \frac{1}{2} + \frac{a^2}{2} = \frac{1}{2} \cdot \left(a^2 + 1\right) - \frac{1}{1 - \ln(a)}$$

Teilaufgabe 1.8.2 (2 BE)

Untersuchen Sie den Grenzwert von A(a) für $a \rightarrow 0^+$.

$$\lim_{a \to 0^{+}} \left[\frac{1}{2} \cdot \left(a^{2} + 1 \right) - \frac{1}{1 - \ln(a)} \right] \to \frac{1}{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$1 \qquad \qquad -\infty$$

Teilaufgabe 1.9 (4 BE)

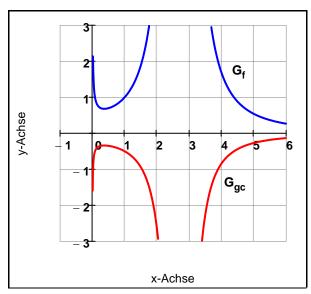
Gegeben sind die reellen Funktionen $\mathbf{g_c}$ mit $\mathbf{g_c}(\mathbf{x}) = \frac{1}{\mathbf{c}} \cdot \mathbf{f}(\mathbf{x})$ mit der Definitionsmenge $\mathbf{D_{g_c}} = \mathbf{D_f}$, wobei $\mathbf{c} \in \mathsf{IR}$ und $\mathbf{c} < -1$. Geben Sie mit Begründung an, wie sich der Graph von $\mathbf{g_c}$ im Vergleich zu $\mathbf{G_f}$ verändert.

 \mathbf{G}_{g_c} ist im Vergleich zu \mathbf{G}_g an der x-Achse gespiegelt, da c<0

 $\textbf{G}_{g_c} \text{ ist im Vergleich zu } \textbf{G}_g \text{ in y-Richtung gestaucht, da } \textbf{0} < \frac{\textbf{1}}{\left|\textbf{c}\right|} < \textbf{1}.$

$$c := -2 \qquad g(x) := \frac{1}{c} \cdot f(x)$$

Þ



Teilaufgabe 2.0

In einer Box werden Mehlwürmer als Futter für Schildkröten gezüchtet. Der Bestand der Mehlwürmer in dieser Box wird in Kilogramm [kg] angegeben und nach einem Modell durch die Funktion M mit

$$\textbf{M(t)} = \textbf{a} \cdot \textbf{e}^{\textbf{b} \cdot \textbf{t}} \, \text{mit} \, \, \textbf{t} \, , \textbf{a} \, , \textbf{b} \, \in \textbf{IR} \, \, \text{und} \, \, \textbf{t} \geq \textbf{0} \, , \textbf{a} > \textbf{0} \, , \textbf{b} > \textbf{0} \, \, \text{beschrieben}.$$

Dabei gibt t die Zeit in Tagen [d] ab Beobachtungsbeginn an.

Zum Zeitpunkt $\mathbf{t} = \mathbf{0}$ werden $\mathbf{0.8 \cdot kg}$ Mehlwürmer in die Box eingesetzt. Exakt drei Tage später hat sich ihr Bestand um $\mathbf{2.79 \cdot kg}$ vermehrt.

Auf das Mitführen der Einheiten kann bei den Berechungen verzichtet werden. Alle Ergebnisse sind gegebenenfalls auf eine Nachkommastelle zu runden.

Teilaufgabe 2.1 (4 BE)

Bestimmen Sie die Werte der Parameter a und b.

$$M(t,a,b) := a \cdot e^{b \cdot t}$$

$$\begin{pmatrix} a_0 & b_0 \end{pmatrix} := \begin{bmatrix} M(0,a,b) = 0.8 \\ M(3,a,b) = (0.8+2.79) \end{bmatrix} \quad \begin{vmatrix} \text{aufl\"osen}\,,a,b \\ \text{Gleitkommazahl}\,,4 \end{vmatrix} \rightarrow \begin{pmatrix} 0.8 & 0.5004 \end{pmatrix}$$

Auslesen:

$$a_0 = 0.8$$

$$b_0 = 0.5$$

Für die folgenden Teilaufgaben gilt: a = 0.8 und b = 0.5

Teilaufgabe 2.2 (3 BE)

Berechnen Sie die mitllere Zuwachsrate des Mehlwürmerbestands in den ersten vier Tagen des Beobachtungszeitraumes.

$$M\left(t\right):=0.8\!\cdot\!e^{0.5\cdot t}$$

$$\frac{M(4)-M(0)}{4-0}=1.278$$

Die mittlere Zuwachsrate beträgt ungefähr $1.3 \cdot \frac{kg}{d}$.

Teilaufgabe 2.3 (4 BE)

Berechnen Sie den Bestand an Mehlwürmern, bei dem die momentane Zuwachsrate 1.2 de beträgt.

$$\label{eq:mass_mass_mass_mass_mass} \text{M}'(t) \rightarrow 0.8 \cdot \text{e}^{0.5 \cdot t} \\ \text{M}'(t) := \frac{\text{d}}{\text{d}t} \text{M}(t) \ = \ 0.4 \cdot \text{e}^{0.5 \cdot t}$$

$$t_0 := M'(t) = 1.2 \rightarrow 0.4 \cdot e^{0.5 \cdot t} = 1.2 \text{ auflösen}, t \rightarrow 2.1972245773362193828$$
 $t_0 = 2.1972245773362193828$

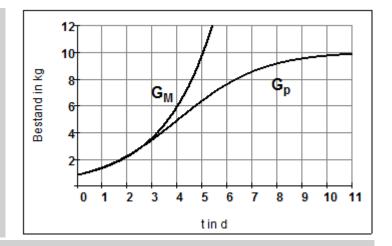
Bestand: $M(t_0) = 2.4$

Teilaufgabe 2.4.0

Durch **M**(t) wie im obigen Modell wird der Bestand an Mehlwürmern nur für wenige Tage hinreichend genau beschrieben. Der tatsächliche Bestand wird durch die Funktion p

mit
$$p(t) = \frac{0.8 \cdot S}{0.8 + 9.2 \cdot e^{-0.6 \cdot t}}$$

mit t, $S \in IR$ und $t \ge 0$, S > 0 besser erfasst.



Im obigen Diagramm sind die Graphen von M und p abgebildet.

Þ

Teilaufgabe 2.4.1 (3 BE)

Entnehmen Sie dem Verlauf von $\mathbf{G}_{\mathbf{p}}$ näherungsweise den maximalen Bestand an Mehlwürmern, die in der Box leben können, und folgern Sie hieraus auf den Wert von S.

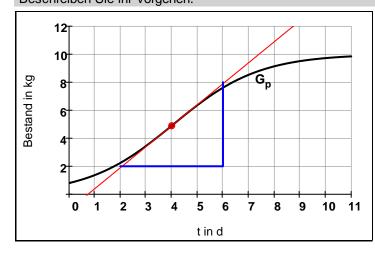
Maximalwert: $p_{max} := 10$

$$\lim_{t \to \infty} p(t) = 10 \qquad \Leftrightarrow \qquad \lim_{t \to \infty} \left(\frac{0.8 \cdot S}{0.8 + 9.2 \cdot e^{-0.6 \cdot t}} \right) = 10$$

$$\Leftrightarrow \frac{0.8 \cdot S}{0.8 + 0} = 10 \qquad \Leftrightarrow \qquad S = 10$$

Teilaufgabe 2.4.2 (4 BE)

Bestimmen Sie mithilfe der Abbildung aus 2.4.0 die größte momentane Zuwachsrate des Mehlwürmerbestands, wie ihn die Funktion p beschreibt. Beschreiben Sie ihr Vorgehen.



Die größte momentane Zuwachsrate von p liegt an der Wendestelle von G_p:

$$t_{xy} = 4$$

Steigung der Tangente aus dem Steigungsdreieck:

$$m:=\frac{8-2}{6-2}=1.5$$

Die größte momentane Zuwachsrate beträgt $1.5 \cdot \frac{kg}{d}$.