Integration mit Ober- und Untersummen, Riemann-Integral

8 Januar, 2012

Für die Herleitung der Berechnung von krummlinig begrenzten Flächen wird oft das Riemann-Integral verwendet. Die gesuchte Fläche unter einem Graphen einer Funktion f wird mithilfe von elementar zu berechnenden Flächeninhalten von Rechtecken angenähert. Dazu wählt man oberhalb und interhalb des Graphen von f  Rechtecke so, dass der Graph der Funktion dazwischen liegt. Durch schrittweises Erhöhen der Anzahl der Rechtecke erhält man eine immer genauere Annäherung der gesuchten Fläche unter dem Graphen.

Riemann-Integral

Artikel Empfehlungen zu "Integration mit Ober- und Untersummen, Riemann-Integral"